燕山大学 已有样品
更新于2024-09-05 14:09:57
本发明公开了一种基于卷积神经网络和数据驱动的非线性动态系统辨识方法,其内容包括:以Lorenz非线性系统生成观测数据及其微分值,并进行归一化处理;由归一化后的观测数据中各个状态量构建非线性状态函数字典,并对其进行张量化扩展;取该张量中的一半数据和其所对应的输出微分值训练卷积神经网络,深度挖掘期望输出微分值与输入之间的内在回归关系;将张量中剩下一半数据作为测试数据输入到卷积神经网络中,比较测试数据的卷积神经网络输出微分值与实际期望输出微分值,给出非线性动态系统辨识结果。本发明针对非线性动态系统辨识问题,在不需要先验信息的情况直接从测量数据实现非线性动态系统的辨识。